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The Challenge: 
Productive Implementation 

of an Auto-tuner  
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Conventional Optimization 

  Take one kernel/application 
  Perform some analysis of it 
  Research the literature for appropriate optimizations 
  Implement a couple of them by hand optimizing for one target machine. 
  Iterate a couple of times. 

  Result:  
 improve performance for one kernel on one computer. 
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Conventional Auto-tuning 

  Automate the code generation and tuning process. 
  Perform some analysis of the kernel 
  Research the literature for appropriate optimizations 
  implement a code generator and search benchmark 
  explore optimization space 
  report best implementation/parameters 

  Result: 
 significantly improve performance for one kernel on any computer. 
 i.e. provides performance portability 

  Downside: 
  autotuner creation time is substantial 
  must reinvent the wheel for every kernel 
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Generalized Frameworks 
for Auto-tuning 

  Integrate some of the code transformation features of a compiler 
with the domain-specific optimization knowledge of an auto-tuner 
  parse high-level source 
  apply transformations allowed by the domain, but not necessarily safe 

based on language semantics alone 
  generate code + auto-tuning benchmark 
  explore optimization space 
  report best implementation/parameters 

  Result: 
 significantly improve performance for any kernel on any computer 
for a domain or motif. 
 i.e. performance portability without sacrificing productivity 
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Outline 

1.  Stencils 
2.  Machines 
3.  Framework 
4.  Results 
5.  Conclusions 
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Benchmark Stencils 
•  Laplacian 
•  Divergence 
•  Gradient 
•  Bilateral Filtering 
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What’s a stencil ? 

  Nearest neighbor computations on structured grids (1D…ND array) 

  stencils from PDEs are often a weighted linear combination 
 of neighboring values 

  cases where weights vary in space/time 
  stencil can also result in a table lookup 
  stencils can be nonlinear operators 

  caveat: We only examine implementations like Jacobi’s Method 
 (i.e. separate read and write arrays) 
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Laplacian Differential Operator 

  7-point stencil on scalar grid, produces a scalar grid 

  Substantial reuse (+high working set size) 
  Memory-intensive kernel 
  Elimination of capacity misses may improve performance by 66% 
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Divergence Differential Operator 

  6-point stencil on a vector grid, produces a scalar grid 

  Low reuse per component. 
  Only z-component demands a large working set 
  Memory-intensive kernel 
  Elimination of capacity misses may improve performance by 40% 
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Gradient Differential Operator 

  6-point stencil on a scalar grid, produces a vector grid 

  High reuse (like laplacian) 
  High working set size 
  three write streams (+ write allocation streams) = 7 total streams 
  Memory-intensive kernel 
  Elimination of capacity misses may improve performance by 30% 
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3D Bilateral Filtering 

  Extracted from a medical imaging application (MRI 
processing) 

  Normal Gaussian stencils smooth images,  
 but destroy sharp edges. 

  This kernel performs anistropic filtering thus preserving 
edges. 

  We may scale the size of the stencil (radius=3,5) 
  73-pt or 113-pt stencils. 
  apply to dataset of 192 x 256x256 slices 
  originally 8-bit grayscale voxels, but processed as 32-bit floats 
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3D Bilateral Filtering 
(pseudo code) 

  Each point in the stencil mandates a voxel-dependent indirection,  
 and each stencil also requires one divide. 

  for all points (xyz) in x,y,z{ 

    voxelSum  = 0 

    weightSum = 0 

    srcVoxel = src[xyz] 

    for all neighbors (ijk) within radius of xyz{ 

      neighborVoxel  = src[ijk]    

      neighborWeight = table2[ijk]*table1[neighborVoxel-srcVoxel] 

      voxelSum +=neighborWeight*neighborVoxel 

      weightSum+=neighborWeight 

    } 

    dstVoxel = voxelSum/weightSum 

  } 

  Large radii results in extremely compute-intensive kernels with large 
working sets 
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Benchmark Machines 
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Multicore SMPs 

  Experiments only explored parallelism within an SMP 
  We use a Sun X2200 M2 as a proxy for the XT5 (e.g. Jaguar) 
  We use a Nehalem machine as a proxy for possible future Cray 

machines. 
  Barcelona/Nehalem are NUMA 
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Generalized Framework for 
Auto-tuning Stencils 

Copy and Paste auto-tuning 
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Overview 

Given a F95 implementation of an application: 

1.  Programmer annotates target stencil loop nests 
2.  Auto-tuning System: 

  converts FORTRAN implementation into internal representation (AST) 
  builds a test harness 
  Strategy Engine iterates on: 

•  apply optimization to internal representation 
•  backend generation of optimized C code 
•  compile C code 
•  benchmark C code  

  using best implementation, automatically produces a library for that 
kernel/machine combination 

3.  Programmer then updates application to call optimized library 
routine 
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Strategy Engine: 
Auto-parallelization 

  The strategy engines can auto-parallelize cache blocks among 
hardware thread contexts. 

  We use a single-program, multiple-data (SPMD) model implemented 
with POSIX Threads (Pthreads). 

  All threads are created at the beginning of the application.  

  We also produce an initialization routine that exploits the first touch 
policy to ensure proper NUMA-aware allocation. 
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Strategy Engine: 
Auto-tuning Optimizations 

  Strategy Engine explores a number of auto-tuning optimizations: 
  loop unrolling/register blocking 
  cache blocking 
  constant propagation / common subexpression elimination 

  Future Work: 
  cache bypass (e.g. movntpd) 
  software prefetching 
  SIMD intrinsics 
  data structure transformations 
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Experimental Results 

NOTE: threads are ordered to exploit: 
  multiple threads within a core (Nehalem only), 
  then multicore,  
  then multiple sockets (Barcelona/Nehalem) 
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Laplacian Performance 

  On the memory-bound architecture (Barcelona), auto-parallelization 
doesn’t make a difference. 

  Auto-tuning enables scalability. 
  Barcelona is bandwidth-proportionally faster than the XT4. 
  Nehalem is ~2.5x faster than Barcelona, and 4x faster than the XT4 
  Auto-parallelization plus tuning significantly outperforms OpenMP. 
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Divergence Performance 

  No changes to the framework were required (just drop in F95 code) 
  As there was less reuse in the Divergence than in Laplacian, there are 

fewer capacity misses. 
  So auto-tuning has less to improve upon  
  Nehalem is ~2.5x faster than Barcelona 
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Gradient Performance 

  No changes to the framework were required (just drop in F95 code) 
  Gradient has moderate reuse, but a large number of output streams. 
  Performance gains from auto-tuning are moderate (25-35%) 
  Parallelization is only valuable in conjunction with auto-tuning 
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3D Bilateral Filter Performance 
(radius=3) 

  No changes to the framework were required (just drop in F95 code) 
  Essentially a 7x7x7 (343-pt) stencil 
  Performance is much more closely tied to GHz  

 instead of GB/s. 
  Auto-parallelization yielded near perfect parallel efficiency 

 wrt cores on Barcelona/Nehalem (Nehalem has HyperThreading) 
  Auto-tuning significantly outperformed OpenMP (75% on Nehalem) 
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3D Bilateral Filter Performance 
(radius=5) 

  basically the same story as radius=3 

  XT4/Nehalem delivered approximately same 
performance as they did with radius=3 

  Barcelona delivered somewhat better performance. 
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Summary 
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Summary: 
Framework for auto-tuning stencils 

  Dramatic step forward in auto-tuning technology 

  Although the framework required substantial up front work, 
 it provides performance portability across the breadth of 
architectures AND stencil kernels. 

  Delivers very good performance, and well in excess of OpenMP. 

  Future work will examine relevant optimizations 
  e.g. cache bypass would significantly improve gradient performance. 

27 



F U T U R E   T E C H N O L O G I E S   G R O U P 

LAWRENCE BERKELEY NATIONAL LABORATORY 

Summary: 
Machine Comparison 
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  Barcelona delivers bandwidth-proportionally better performance on the 
memory-intensive differential operators. 

  Surprisingly, Barcelona delivers ~2.5x better performance on the compute 
intensive bilateral filter. 

  Nehalem clearly sustains dramatically better performance than either 
Opteron. 

  Despite having a 15% faster clock, nehalem realizes a much better bilateral 
filter performance. 
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Questions? 


